Skip to main content

The Power Consumption of Home Electronics

I learned something last week. Xbox and PlayStation Game consoles are pathetically bad at energy consumption. The Wii doesn’t suck (power) quite as badly.

The Data:

The Natural Resources Defense Council did an interesting study[1] of game consoles and attempted to estimate annual energy usage and cost.

The good part:
Ouch. Unlike half watt wall warts, a hundred and some odd watts might actually show up on your monthly electric bill. And from what NRDC can tell, the game consoles are not real good at powering themselves off when unused, which makes the problem worse.

This is really discouraging. The idea that energy consuming devices should automatically drop themselves down into a low-power state when idle isn’t new, yet we continue to build (and buy) devices with poor power management. I suspect that part of the problem is that there isn’t sufficient information available to consumers at the time of purchase to make a rational ‘green’ decision. Unlike refrigerators, clothes washers, and automobiles (here in the USA), energy consumption isn’t part of the marketing propaganda of most home electronics. 

It should be.

Someday smart retailers will figure out how to market energy costs on home electronics, much like they already do for large home appliances. For my last clothes washer/dryer (tumbler, to those on the wrong side of the pond) the sales dude tried to push me up to a higher cost model based on features. When I explained that for clothing related appliances, my feature requirements were a step above a rock in a river, he wisely and quickly pointed me to an expensive but efficient washer & dryer model.


As for the report as a whole, I’m skeptical of the annual gross energy costs and savings shown in the report, mostly because the estimates are highly dependent on user actions. I suspect that we really don’t know how many game consoles are left on continuously versus powered down after each use, and more importantly, the NRDC doesn’t consider the cost of cooling the heat generated by the consoles in those parts of the country where air conditioning normally is used.

So if you are like my neighbors and you leave your air conditioner running all summer, your summertime gaming costs will be much higher. The hundred plus watts of heat needs more than a hundred plus watts of cooling. But if like me, you live in a climate where heating is the norm for more than half the year, the waste heat generated by the console gets subtracted from the heat that your furnace needs to supply, making the cost of gaming somewhat less.

In any case, don’t sweat the wall warts. Look around for things that suck up a hundred or more watts and unplug those.

12/17/2010: Scientific American published a similar article.

[1]Lowering the Cost of Play, Natural Resources Defense Council


  1. wow, it's hard to believe that the PS3 actually uses more power when idle than when active. Amazing.


Post a Comment

Popular posts from this blog

Cargo Cult System Administration

Cargo Cult: …imitate the superficial exterior of a process or system without having any understanding of the underlying substance --Wikipedia During and after WWII, some native south pacific islanders erroneously associated the presence of war related technology with the delivery of highly desirable cargo. When the war ended and the cargo stopped showing up, they built crude facsimiles of runways, control towers, and airplanes in the belief that the presence of war technology caused the delivery of desirable cargo. From our point of view, it looks pretty amusing to see people build fake airplanes, runways and control towers  and wait for cargo to fall from the sky.
The question is, how amusing are we?We have cargo cult science[1], cargo cult management[2], cargo cult programming[3], how about cargo cult system management?Here’s some common system administration failures that might be ‘cargo cult’:
Failing to understand the difference between necessary and sufficient. A daily backup …

Ad-Hoc Versus Structured System Management

Structured system management is a concept that covers the fundamentals of building, securing, deploying, monitoring, logging, alerting, and documenting networks, servers and applications. Structured system management implies that you have those fundamentals in place, you execute them consistently, and you know all cases where you are inconsistent. The converse of structured system management is what I call ad hoc system management, where every system has it own plan, undocumented and inconsistent, and you don't know how inconsistent they are, because you've never looked.

In previous posts (here and here) I implied that structured system management was an integral part of improving system availability. Having inherited several platforms that had, at best, ad hoc system management, and having moved the platforms to something resembling structured system management, I've concluded that implementing basic structure around system management will be the best and fastest path to…

The Cloud – Provider Failure Modes

In The Cloud - Outsourcing Moved up the Stack[1] I compared the outsourcing that we do routinely (wide area networks) with the outsourcing of the higher layers of the application stack (processor, memory, storage). Conceptually they are similar:In both cases you’ve entrusted your bits to someone else, you’ve shared physical and logical resources with others, you’ve disassociated physical devices (circuits or servers) from logical devices (virtual circuits, virtual severs), and in exchange for what is hopefully better, faster, cheaper service, you give up visibility, manageability and control to a provider. There are differences though. In the case of networking, your cloud provider is only entrusted with your bits for the time it takes for those bits to cross the providers network, and the loss of a few bits is not catastrophic. For providers of higher layer services, the bits are entrusted to the provider for the life of the bits, and the loss of a few bits is a major problem. These …